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Introduction

Since human immunodeficiency virus type 1 (HIV-1), 
a causative agent of acquired immune deficiency syn-
drome (AIDS), was first discovered in 1981 [1], HIV-1 
reverse transcriptase (RT) has been the subject of 
intensive studies. HIV-1 RT is part of the HIV capsid 
and has an essential role in the replication of the AIDS 
virus. This enzyme transcribes the single-stranded RNA 
of the AIDS retrovirus to a double-stranded DNA which 
can then be integrated into the host genome. The RT 
is a heterodimer composed of two subunits, the 66 kDa 
(p66, 560 residues) and the 51 kDa (p51, 440 residues) 
domains. Both subunits have a polymerase domain, but 
it is only functionally active in the p66 subunit, whereas 
the p51 subunit is simply a cleaved version of p66, and 

lacks the ribonuclease H (RNaseH) domain [2]. Due to 
its key role in the HIV life cycle, RT is an important tar-
get for antiviral agents in the treatment of AIDS.

Anti-HIV-1 RT drugs can be divided into two main 
classes: nucleoside reverse transcriptase inhibitors 
(NRTIs) and non-nucleoside reverse transcriptase inhib-
itors (NNRTIs). NRTIs are competitive to the nucleotide 
substrates and act as chain terminators when incorpo-
rated into viral DNA by HIV-1 RT. However, they instigate 
serious side effects, especially damage to mitochondria 
[3–5]. NNRTIs are non-competitive inhibitors which are 
highly specific for HIV-1 RT at a common allosteric site 
approximately 10 Å apart from the polymerase active 
site. In addition, they are less likely to cause adverse side 
effects by disruption of normal DNA polymerase activity 
[4–5]. Consequentially, interest is currently focused upon 
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the NNRTIs group, aiming to understand and to provide 
a detailed insight into the HIV-1/NNRTIs interactions.

Residues that have been reported to play an important 
role in binding to the NNRTI consist of approximately 15 
amino acid residues from the p66 subunit, L100, K101, 
K103, V106, T107, V108, V179, Y181, Y188, V189, G190, 
W227, W229, L234 and Y318 plus the E138 residue from 
p51. It appears that these binding pocket residues are 
flexible to some extent depending on the molecular shape 
and size, the specific chemical structure, and the binding 
mode of the individual NNRTIs [6–8]. The NNRTIs consid-
ered in this study are efavirenz (EFV), emivirine (EMV), 
etravirine (ETV) and nevirapine (NVP). Figure 1 shows 
their structures in the corresponding binding pockets of 
HIV-1 RT, their chemical compositions and numbering of 
selected atoms. NVP is classified as a member of the first 
generation of NNRTIs. EMV has been found to inhibit 
HIV strains that have developed resistance against NVP, 
albeit at a higher concentration than that required to 
inhibit the wild-type virus, but it failed to in clinical tri-
als [9]. EFV and ETV are classified as second generation 
inhibitors. EFV is the most prescribed NNRTI used for 
patients for first-line antiretroviral therapy because of its 
potent activity on wild-type HIV-1 [10]. ETV shows potent 
efficacy and retains potency in patients infected with 
NNRTI-resistant HIV-1 variants [7,11]. Experimentally 

derived half maximal inhibitory concentration (IC50) 
values of the wild-type HIV-1 RT treated with NNRTIs 
were reported in the following order: EFV > ETV > EMV 
> NVP [7,12–14]. However, more NNRTIs are needed to 
overcome the drug resistance mutations in the enzyme. 
Evidently, there exists no final treatment solution against 
the AIDS. NNRTI-resistant mutations cluster between 
position 98–108, 179–190, and 22–238 in the p66 subunit. 
K103N is probably the predominant mutation observed 
in patients receiving NNRTIs. Y188L has also been linked 
to high-level cross-resistance, mainly induced by NVP. 
In addition there are ten other residues with selected 
mutations, L100I, K101P, V106M/A, V108I, Y181C/I/V, 
G190A/S/C/E/Q, P225H, M230L, P236L and Y318F, have 
been observed [15].

This work aims to investigate the amino acid residues 
that are responsible for the HIV-1 RT–NNRTIs interac-
tions by means of molecular dynamics and free energy 
calculation methods. Here, we constructed four model 
systems consisting of the HIV-1 RT with 1000 residue-
long complexed with the four NNRTIs, (EFV, EMV, ETV 
and NVP). The size of the systems for the MD simula-
tions was considerably large compared to what has been 
studied previously using the same protein with the same 
approach [9,13,16–18]. The calculation was focused upon 
examination of the structure, binding free energy and 
water accessibilities in the binding site of each of the four 
HIV-1 RT/NNRTI complexes. In addition, the distribu-
tion and binding of water molecules in the cavity of the 
enzyme-inhibitor complex, which is known to play an 
important role in the drug binding, was investigated and 
is discussed with reference to those found in the crystal 
structures. This information will be helpful for the rational 
design of new anti-HIV drugs with improved resistance 
profiles for anti-HIV therapy, as well as prediction of new 
resistance mutations.

Methods

Initial structures of HIV-1 RT and their complexes
The initial crystallographic structures of HIV-1 reverse 
transcriptase complexed with EFV, EMV, ETV and NVP 
were obtained from the Protein Data Bank (RCSB PDB,  
http://www.rcsb.org), entry codes 1FK9 [19], 1RT1 [20], 
1SV5 [7] and 1VRT [19], respectively. The wild type sys-
tem was reconstructed from the structure of the muta-
tion K103N (1SV5) by replacing the glutamine by a lysine 
using the LEaP module in the AMBER 9 software package 
[21]. The missing residues of 1FK9, 1RT1 and 1VRT were 
reconstructed with the help of another X-ray structure 
(PDB entry code 1SV5) and the subsequent low temper-
ature annealing and energy minimisation procedures of 
the added residues whilst constraining the known X-ray 
residue positions. All the missing hydrogen atoms of 
the protein were added using the LEaP module in the 
AMBER 9 software package. The ionisation states of the 
amino acids with electrically charged side chains were 
assigned using the PROPKA program [22].

O1 O1

O1

O1
O2

O2

O3 Br

N1 N1

N2 N2

N3 N1 N4

N4

CN5
N3

N2

N1

N6

Cl

EFV EMV ETV NVP

CF3

Figure 1. Geometries of EFV (A), EMV (B), ETV (C) and NVP (D), in 
their binding pockets of HIV-1 RT. Chemical structures of NNRTIs and 
the definition of atoms are also given. 
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Force field parameters of inhibitors
The starting structures and force field parameters for 
the four inhibitors were obtained in the following way: 
Ligand geometries were optimised using Gaussian03 
[23] with the HF/6-31G* method. Then, single-point cal-
culations were carried out to compute the electrostatic 
potentials around each compound using the same basis 
set and level of theory. The electrostatic potential was 
calculated by RESP [24]. Partial charge generation and 
assignment of the force field [25] were performed using 
the antechamber suite [26].

Molecular dynamics simulations
Energy minimisation and MD simulations were per-
formed using the SANDER module of the AMBER 9 
software package. An all-atom representation of the 
system was used employing the ff03 force field [27,28] 
to assign parameters for the standard amino acids. To 
incorporate the solvent and counter ions under con-
sideration, each system was solvated using the TIP3P 
water model [29]. Neutralisation was performed by 
counter ions using the LEaP module. The total num-
bers of atoms were 142662, 141659, 141220 and 143341 
for the RT/EFV, RT/EMV, RT/ETV and RT/NVP sys-
tems, respectively. The periodic boundary condition 
with the NPT ensemble was applied. The simulation 
steps consisted of thermalisation, equilibration and 
production phases. Initially, the temperature of the 
system was gradually increased from 0 K to 298 K dur-
ing the first 50 ps. Then, the system was maintained 
at 298 K until the MD simulations reached 1.5 ns. 
Finally, the production phases were held up from 1.5 
ns to 3.0 ns. A Berendsen coupling time of 0.2 ps was 
used to maintain the temperature and standard pres-
sure of the system [30]. The SHAKE algorithm [31] was 
applied to constrain all the bonds involving hydrogen 
atoms, and a simulation time step of 2 fs was used. All 
MD simulations were run with a 10 Å residue-based 
cut-off for non-bonded interactions and the particle-
mesh Ewald (PME) method was used as an adequate 
treatment of long-range electrostatic interactions [32]. 
The convergence of energies, temperature, pressure 
and root mean square displacements (RMSD) was 
monitored to verify the stability of the systems. After 
reaching an almost stable RMSD value, the production 
phase selected was adjusted from 1.5 ns to 3.0 ns for 
the four systems.

The binding free energy calculations
The binding free energies (ΔG

binding
) of the four systems 

were estimated by the MM-PBSA approach [16,33]. In this 
method, the ΔG

binding
 value can be calculated according to:  

1) the molecular mechanics interaction energy of the 
protein-inhibitor complex in vacuum, composed of the 
electrostatic interaction and the van der Waals interac-
tion, 2) the contribution of solute entropy to binding and 
3) the solvation free energy, composed of the polar and 
the nonpolar contributions. An extensive determination 

of the entropic effect from the normal mode analysis 
requires high computational demands and is therefore 
costly. However, the entropic contribution of the inhibi-
tors may not be negligible for calculating the binding free 
energy, therefore, the binding free energies (ΔG

binding
) 

incorporating the contribution of the entropy (TΔS) of 
the four systems were calculated. Owing to the system 
size (already 1,000 residues for HIV-1 RT), the entropic 
contributions were not taken into account for the whole 
system. Therefore, one hundred MD snapshots from 
1500 to 3000 ps of the full-length RT complexes with a 
truncated HIV-1 RT protein composed of residues 1–350 
were extracted for calculating ΔG

binding
 including the TΔS 

by using the NMode program [34]. These residues were 
selected because their location covers the binding pocket 
of HIV-1 RT. The solvation energy was calculated using 
the dielectric constant of 1 for the protein interior and 80 
for the water molecule. The electrostatic solvent energy 
was calculated using the PBSA program [35], whilst the 
nonpolar contribution of the solvent was determined 
using the MolSurf program [36].

Results and discussion

Hydrogen bonds between inhibitors and the enzyme
To analyse the ligand-enzyme interaction, the occur-
rence of hydrogen bonds between the inhibitors and the 
binding pocket residues together with the percentage of 
occupations were determined based on the following cri-
teria: 1) a proton donor-acceptor distance of ≤3.5 Å, and 
2) a donor-H-acceptor bond angle of ≥120°. The analysis 
was carried out on the trajectories after equilibration. The 
results are summarised in Table 1.

As can be seen from the table, the hydrogen bond 
patterns observed for EFV and EMV are slightly differ-
ent. For EFV, there are two strong and one weak hydro-
gen bonds (with occupations of 100%, 73% and 13%) 
respectively, these were detected with residue K101 only 
and no hydrogen bond interaction with K103 could be 
found. For EMV, the ligand binds strongly through a sin-
gle hydrogen bond to the binding pocket via K101 with a 
100% hydrogen bond occupation.

Table 1. Percentage occupation for detected hydrogen bonds 
between amino acid residues in the binding pocket and the 
inhibitors in the four simulated systems, RT-EFV, RT-EMV, RT-ETV 
and RT-NVP (see definition of atoms for NNRTIs in Figure 1).

NNRTI Type
% 

Occupation
EFV N1-H… O∙C K 101 100

 N1…H-N K 101 13
 O1…H-N K 101 73
EMV N1-H… O∙C K 101 100

 O1…H-NZ K 103 10
 O1…H-NZ K 103 4
ETV N1-H… O∙C K 101 5

 N3-H…OE1 E 698 24
NVP - -
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In the case of ETV, a less weak hydrogen bond is 
observed between the nitrogen of the inhibitor and the 
carboxylate group of E698 (E138 in the p51 subunit) 
with a 24% occupation. Such an interaction with E698 is 
unusual for HIV-1 RT/NNRTIs complexes, and is found 
only in special cases [37].

For the NVP, no hydrogen bond formation within the 
binding pocket of RT was found. This observation is in 
agreement with the X-ray structure of the HIV-1 RT-NVP 
complex [20], and the suggestions of Kohlstaedt et al. [2] 
and Das et al. [7], who stated that NVP generally contains 
aromatic rings and forms π-π interactions with the five 
aromatic amino acid residues (Y181, Y188, F227, W229 
and Y318) in the HIV-1 RT binding pocket without any 
hydrogen bonds.

Taking into account all the hydrogen bond data given 
above, EFV and EMV bind much more tightly into the 
catalytic site of the HIV-1 RT than ETV, whilst for NVP no 
hydrogen bond interactions were found. These hydro-
gen bond patterns seem to correspond with the binding 
affinities and subsequently, with the experimentally 
derived IC

50
 values of the drugs. However, the HIV-1 RT 

binding pocket of NNRTIs is a hydrophobic cavity and, 
consequently other types of interactions also need to be 
considered too.

Which RT residues are important for binding?
The interaction energies between inhibitors and indi-
vidual amino acid residues can be calculated using the 
decomposition energy module of AMBER 9, in order to 
identify the residues that are important for the binding 
affinities. The plot of the decomposition energies (DC) 
of those amino acids of RT, which are located within 
5 Å of the binding pocket, is shown in Figure 2. Their 
interaction energies vary from −4 to −1 kcal/mol for all 
the systems. It is interesting to note that the nine amino 
acid residues: L100, K101, K103, V106, Y181, Y188, 
F227, W229 and L234, show the largest contributions 
to the HIV-1 RT/NNRTIs interaction energies. These 
observations support the previous clinical data [15,38], 
which found that the mutations in viruses from resistant 
patients, and thus mutations likely to have been selected 
for resistance, mainly occur on these residues.

As can be seen in Figure 2, the interaction energies of 
RT for six of the above nine amino acid residues namely, 

L100, V106, V179, V189, L234 and P236, with the four 
inhibitors are not significantly different. The amino acids 
of HIV-1 RT with the highest interaction energies for 
EFV are K101 and K103. This seems to be in contrast to 
the previous section which focused on hydrogen bond-
ing, where no hydrogen bond with K103 was observed. 
However, interactions calculated in this section are total 
interactions where not only hydrogen bonds but also 
other types of interactions such as electrostatic and van 
der Waals interactions are included. In the RT/NVP sys-
tem, the interaction energies with the residues Y181 and 
Y188 were the highest compared with the other three 
inhibitors. The simulated interaction energies of K101, 
K103, Y181 and Y188 are comparable to those found 
experimentally in which the K103N mutation affects a 
high resistance to EFV by reducing the rate of inhibitor 
entry [39], whilst the mutation of the Y181C and Y188L 
amino acid residues cause high resistance levels against 
NVP by loss of the favourable aromatic ring interactions 
[7]. Therefore, the data leads us to conclude that the 
importance of these residues on the interaction energies 
is a primary consequence of the mutation of NNRTIs.

Inhibitors/HIV-1 RT binding free energies
The total binding free energies (ΔGbinding) averaged over 
the trajectories between 1.5 and 3 ns were calculated for 
the RT/EFV, RT/EMV, RT/ETV and RT/NVP complexes 
using MM-PBSA. The free energies and decomposed free 
energies are shown in Table 2.

The van der Waals interactions, part of the ΔE
solute

, 
appear to be the major contribution to the −HIV-1 RT/
inhibitor binding (∼80%) for all complexes in accor-
dance with the fact that the binding pocket of the HIV-1 
RT is considerably hydrophobic. Amongst the four com-
plexes, the order of ΔE

vdw
 interactions in the gas phase 

(solute) are RT/ETV ∼ RT/EMV > RT/EFV ∼ RT/NVP, 
whilst those for ΔE

ele
 interactions are RT/ETV > RT/

EFV > RT/EMV > RT/NVP. However, the binding free 
energies (ΔG

binding
) of RT with EFV and ETV are of about 

the same magnitude, but larger than those of the other 
two inhibitors, EMV and NVP. The solvation free energy 
(ΔG

sol
) is the most important term for total binding free 

energy and for EMV and ETV the gas phase interaction 
energies are larger than those of EFV and NVP, which 
is likely to be a consequence of the overall free solvent 

RT-EFV RT-EMV RT-ETV RT-NVP

L100

D
C

/k
ca

lm
ol

−1

K101

K103 V106 V179

Y181

Y188

V189

F227
W229

P236

L234

0

2

−2

−4

Figure 2. Per residue interaction energies of the HIV-1 RT to EFV, EMV, ETV and NVP with those residues which contribute most to the inhibitor  
surroundings.
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energies of these molecules (including the binding 
pocket and complexes). This is in agreement with the 
solvation data where more water molecules were found 
in the neighbourhood of ETV and EMV than that for 
EFV. The absolute values of the predicted binding free 
energies are consistent with the reported experimen-
tally derived IC

50
 values, as shown in Table 2, but it is 

important to note that the experimentally derived val-
ues depend on the method used [7,12–14].

For the structural differences of the ligands, the 
entropic contribution of the inhibitors may not be negli-
gible for calculating the binding free energy. Because of 
the system size we were not able to compute the entropic 
energy of the entire system because the protein has 1000 
residues and is huge. Therefore, one hundred MD snap-
shots from 1500 to 3000 ps of the full-length RT complexes 
with a truncated HIV-1 RT protein composing of residues 
1–350 were extracted for calculating ΔG

binding
 includ-

ing the TΔS. These residues were selected because they 
constitute the binding pocket for HIV-1 RT and NNRTI 
inhibitors. We believe that although the inclusion of all 
residues would be important for determining the bind-
ing free energy accurately, the most important contribu-
tion should be considered using our 350-residue model. 
Thus, the relative stabilities of the four NNRTIs inhibitors 
could be addressed correctly and these results are shown 
in Table 3. From the calculations, the order of ΔG

binding
 are 

RT/EFV > RT/ETV > RT/EMV > RT/NVP. Interestingly, 
this trend of free energies (where the entropy term is 
included) is the same as those obtained for a 1,000-RT 

residue-model but without inclusion of the entropic 
terms. Despite apparent differences in their ligands 
these inhibitors share the common six-membered het-
erocyclic ring as the core structure.In their bound state, 
the conformation of the conserved ring exhibits similar 
orientations in such a way that the N1 nitrogen of the ring 
forms a hydrogen bond to K101 (Figure 1) with the excep-
tion of NVP. Such a conformational arrangement of the 

0.0
0 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

Distance/A

RT/EMV

RT/ETV

RT/NVP

RT/EFV

g 
(r

)
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N2 N5 N3 N4 N6
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N1

0.5
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Figure 3. Radial distribution functions, g(r), centred on the inhibitor 
atoms to the oxygen atoms of modelled water of the four complexes, 
RT/EFV, RT/EMV, RT/ETV and RT/NVP. The chemical structures of 
each inhibitor together with the numbering of the atoms and running 
integration number up to the first minimum (marked as arrow) are 
also given.

4.19 Å

2.56 Å

EFV EMV

ETV NVP

2.73 Å

2.67 Å

2.98 Å
2.73 Å

3.70 Å

2.84 Å

Figure 4. Snapshot of the MD simulation showing the surrounding 
water molecules of the first hydration shell of the four NNRTIs in the 
HIV-1 RT binding pocket.

Table 2. Calculated binding free energy and its components 
(kcal/mol) as well as the experimental IC50 (in µM) of the NNRTIs 
complex with RT.
 RT-EFV R-EMV R-ETV R-NVP

ΔE
el −11.0 ± 2.6 −7.7 ± 2.1 −17.5 ± 5.7 −5.7 ± 1.9

ΔE
vdw −42.4 ± 1.8 −49.7 ± 2.7 −50.3 ± 2.9 −42.1 ± 2.0

ΔE
solute −53.4 ± 2.5 −57.4 ± 3.3 −67.8 ± 5.0 −47.8 ± 3.2

ΔGnonpolar −3.6 ± 0.1 −4.1 ± 0.2 −6.5 ± 0.2 −3.6 ± 0.3

ΔGel 25.0 ± 2.1 32.7 ± 3.0 43.3 ± 3.4 25.5 ± 2.6

ΔGsol 21.4 ± 2.1 28.6 ± 3.0 36.8 ± 3.3 21.9 ± 2.6

ΔGbinding −31.8 ± 2.4 −28.8 ± 2.8 −31.0 ± 4.5 −25.9 ± 3.7
 0.0017  0.0027 0.0857

I
5

0.0011  0.00141 0.761

  0.0041  0.0341

 0.0041  0.0291 0.0391

Table 3. Calculated binding free energy (kcal/mol) of the NNRTIs 
complex with HIV-1 RT for residues position 1-350, residues 
around the binding pocket.
 RT-EFV RT-EMV RT-ETV RT-NVP

-TΔS 19.7 ± 11.1 20.2 ± 10.3 23.0 ± 10.3 16.9 ± 10.7

ΔG
binding

 
(excluded 
TΔS)

−57.4 ± 2.5 −54.9 ± 2.9 −59.7 ± 2.9 −47.0 ± 2.5

ΔG
binding

 
(included 
TΔS)

−37.7 ± 11.4 −34.7 ± 10.7 −36.7 ± 10.7 −30.1 ± 11
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bound NNRTIs is known as a butterfly-like shape and has 
π-π interactions with the aromatic amino acids (Y181, 
Y188, F227, W229 and Y318). Therefore, the entropic  
contribution was not large enough to change the order of 
the values of ΔG

binding
.

Water molecules in the cavity of HIV-1 RT
The distribution of water molecules in the cavity of the 
enzyme-inhibitor complex is known to play an essential 
role in drug binding. To analyse this information, the radial 
distribution functions (RDFs, g

xy
(r)), that is the probability 

of finding the particle of type y in the spherical radius r, 
around the particle of type x, were evaluated. Here, the 
RDFs for donor and acceptor atoms of the four inhibitors 
(EFV: N1, O1-O2, EMV: N1-N2, O1-O3, ETV: N1-N5, O1 and 
NVP: N1-N4, O1 (see labels in Figure 3), to the oxygen atom 
of the water molecule were calculated. The results, as well 
as the running coordination numbers integrated up to the 
first minimum (marked by an arrow), of the correspond-
ing RDF are summarised in Figure 3, whilst the chemical 
structures of each inhibitor together with the definition of 
the atoms are summarised in Figure 4.

To estimate the total number of water molecules in 
the pocket of the HIV-1 RT, any oxygen atom of water 
lying within the spherical radius of the first minimum 
of the donor atoms of NNRTIs were counted. The four 
inhibitors were increasingly solvated in the order of 
ETV > EMV > NVP ∼ EFV (Figure 3), and this was the 
case when considered in terms of both the coordination 
number and distances to solvent molecules. To visualise 
the above-mentioned hydration, the snapshots which 
accumulate water molecules lying under the first peak 
∼ 4 Å of the RDFs are displayed in Figure 4.

For EFV, the RDF shows a sharp and narrow first 
peak at ∼2.9 Å, with a corresponding coordination 
number (CN) of 1, indicating that O1 is solvated by a 
single water molecule. In terms of hydrogen bonding 
(O-O distance 3.0 Å), this accounts for 100% occupa-
tion in good agreement with the X-ray structure (PDB: 
1FK9). The solvation of the N1 atom can be accessed by 
0.5 water molecules with a distance of ∼4.5 Å (Figure 
4), suggesting that this is the same water found at the 
O1 site which is swinging back and forth between the 
nearby binding site. A small broad peak pronounced at 
4.5 Å, with a CN of 0.5 water molecules was found for O2 
indicating a weak hydrogen bond of around 30% occu-
pation between O2 of EFV and the water molecule.

For the RDFs of EMV, two water molecules were 
found in the binding pocket in agreement with the 
X-ray structure (PDB: 1RT1). The first sharp peak of O1 
and the broad peak of N1 can be clearly seen, which is 
pronounced at 3 Å and 4 Å with the CNs of 1 and 0.5 
water molecules, respectively. For O2, N2 and O3, the 
first peaks were observed at 3, 4.5 and 4.5 Å with CNs of 
1, 0.5 and 0.5, respectively. The detailed analysis of the 
simulated trajectories shows that the various coordina-
tion numbers result from one water molecule which is 
located in the vicinity of the side chain of the inhibitor.

For ETV, solvation of N3 can be accessed by 2.5 water 
molecules (the configuration is shown in Figure 4) at a 
distance of ∼3 Å (Figure 3). However, the minimum of 
the first sharp peak is above zero which demonstrates 
solvent exchange is occurring between the first and 
another water molecule with N3. A small broad peak 
pronounced at 4 Å with a CNs of 0.5, results from the 
same water molecule found at N3. A small sharp peak, 
pronounced at 3 Å with a CN of 0.5 water molecules, 
was found for N5 which indicates a strong hydrogen 
bond between the N5 of ETV and the water molecule. 
However, this hydrogen bond wasn’t seen during the 
whole simulation time of the MD simulation. No water 
molecules were detected around the O1, N2, N4 and N6 
atoms.

For NPV, RDFs of N1 and N3 donor atoms show the 
first sharp peaks at 3.0 Å, with a CN of 1, which indicates 
that N1 and N3 are solvated by one water molecule (this is 
the same as those found in X-ray; 1VRT). The first broad 
peak of N2 RDF observed at 4.0 Å with a CN of 1 indi-
cates that N2 is solvated by the same water molecule as 
N3. In contrast, N4 and O1 were observed to be free from 
solvation.

The RDFs calculation is in good agreement with the 
X-ray structure of EFV, EMV and NVP, whereas the RDF 
of ETV could not be compared because its X-ray struc-
ture does not include water coordinates. Taking into 
account all the data and the discussion given above, 
the EFV atoms are much less accessible by water mol-
ecules than the other three inhibitors, considered in 
terms of both coordination number and distance to 
solvent molecules. This implies that there is less space 
available between the EFV atoms and the enzyme resi-
dues, a conclusion which was strongly supported by 
the hydrogen bond formation (Table 1) and enzyme/
inhibitor binding energies (Table 2), i.e. amongst the 
four inhibitors, the main contribution of EFV was 
exhibited in terms of number as well as the percentage 
occupation of hydrogen bonds, as shown in Table 1.

Conclusion

MD simulations of the HIV-1 RT complexed with EFV, 
EMV, ETV and NVP provide information on hydro-
gen bonding, important residues of the HIV-1RT/
inhibitor interaction energies, binding free ener-
gies and hydration structures of the complexes. The 
simulation results report good evidence concerned 
with questions related to the basic mutation and free 
energy data. With regard to the interaction energies, 
the nine amino acid residues, L100, K101, K103, V106, 
Y181, Y188, F227, W229 and L234, show the largest 
contributions to the enzyme/inhibitor interaction 
energies. The obtained results support clinical data 
which revealed that these same nine residues are the 
most frequent mutated amino acids recovered in viral 
isolates from NNRTI resistant patients, suggesting 
selection for these mutations for NNRTI resistance. 
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The data leads us to conclude that the residues which 
are of high importance for the interaction energy 
are the primary sources for selected mutations of 
NNRTIs. In addition, the binding affinities calculated 
by MM-PBSA, ΔG

binding
 values were observed in the 

following order: EFV ∼ ETV > EMV > NVP. This agrees 
well with the experimental IC

50
 values. In addition, 

the distribution of water molecules is comparable 
to that found in the crystal structures and is in good 
agreement with enzyme/inhibitor binding energies 
in which the EFV atoms can be much less accessed by 
water molecules than by the other three inhibitors.
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